PHARMACOGENETICS

PHARMACOGENETICS

This area of genetic testing includes the analysis of hereditary variability in the organism's response, which is dependent on the use of clinically relevant drugs. The result of the examination is often decisive for the choice of the patient’s treatment in a number of diseases.

Pharmacogenetics or, more precisely, pharmacogenomics, is the study of how differences in our genes affect how drugs act on our bodies and how our bodies respond to those drugs. In this case, genetic predispositions affect the rate of metabolic processing (activation or breakdown) of a drug, its concentration in the blood, the effectiveness of treatment and the risk of side effects. 

Differences in the rate of drug metabolism can be significant and drug levels in the body can vary by a factor of 10 just based on genetics. These extremes concern around 10% of people in our population. And such people are the patients for whom the applied treatment does not work at all. Or, conversely, a high rate of side effects leads to discontinuation.

5-FU CHEMOTHERAPY (BEFORE TREATMENT)

The 5-fluorouracil (5-FU) pyrimidine analogue is used in the chemotherapy of solid tumours, mainly of the colorectum, breast, head/neck, ovary and skin. The function of dihydropyrimidine dehydrogenase, which is encoded by the DPYD gene, is important for its metabolism.

About 3-5% of the population carries the DPYD*2A allele, caused by a splice mutation in intron 14 (IVS14+1G>A). Carriers of the DPYD*2A allele have reduced DPD activity and develop severe to lethal haematological, gastrointestinal or neurological toxicity as a result of 5-FU therapy. It is recommended to test the following variants in the DPYD gene: c.1236G>A (HapB3), c.1679T>G (DPYD*13), c.1905+1G>A (DPYD*2A, IVS14+1G>A), c.2846A>T (p.D949V).

Gene, specification: DPYD gene (c.1905+1G>A, c.1236G>A, c.1679T>G, c.2846A>T)

Type of material to be examined: blood, buccal swab

Indicating specialists: medical genetics, internal medicine, clinical haematology, clinical oncology (excluding radiation oncology)

Delivery time: 3 working days

Learn more about the product

More info

METABOLISM OF THIOPURINE DRUGS

Thiopurine drugs (6-thioguanine, 6-mercaptopurine and azathioprine) are used as anticancer drugs and immunosuppressants in the treatment of haemato-oncological diseases in children, autoimmune diseases, idiopathic intestinal inflammation and in transplantation.

The TPMT enzyme (thiopurine S-methyltransferase) is essential for the biodegradation of thiopurines into inactive and non-toxic metabolites that are subsequently eliminated from the body. With reduced TPMT activity, thioguanine nucleotides accumulate, leading to adverse effects such as neurotoxicity, hepatotoxicity, myelosuppression, mucosal inflammation, etc. Reduced metabolic activity of the TPMT enzyme is due to functional polymorphisms in the encoding region of the TPMT gene. In the Indo-European population, the most common alleles are TPMT*3A, TPMT*2 and TPMT*3C, less common is TPMT*3B. The TPMT*2 allele contains a single nucleotide substitution in exon 5 (G238C), TPMT*3C substitution in exon 10 (A719G) and TPMT*3B substitution in exon 7 (G460A). In TPMT*3A, the two polymorphisms mentioned above have been described in exon 7 and exon 10 (G460A + A719G).

Gene, specification: TPMT gene (c.238G>C, c.460G>A, c.719A>G)

Type of material to be examined: blood, buccal swab

Indicating specialists: medical genetics, internal medicine, clinical haematology, gastroenterology and hepatology, rheumatology, paediatrics, allergology and clinical immunology

Delivery time: 3 working days

Learn more about the product

More info

WARFARIN METABOLISM

Warfarin is a common oral anticoagulant. It has a relatively narrow therapeutic window, where insufficient and excessive doses can have fatal consequences for the patient - therefore, dosage is strictly individual. Besides other medications used and associated comorbidities, the dosage depends mainly on genetic predispositions.

Warfarin is metabolized by the CYP2C9 isoenzyme, which exhibits varying degrees of activity. Up to 20% of the European population has genetically reduced enzyme activity, which necessitates the administration of lower doses of warfarin. Warfarin aims to block the VKOR receptor, which regenerates vitamin K in the body into an active form that restarts the coagulation cascade. Gene variants that reduce the activity of the receptor also reduce blood clotting, so its carriers need less warfarin to achieve the same therapeutic effect. The most significant allelic variants in the CYP2C9 gene are caused by point substitution 416C>T in exon 3 with substitution at the protein level Arg144Cys - CYP2C9*2 allele and 1061A>C with substitution Ileu359Leu - CYP2C9*3 allele. These variants significantly reduce the activity of the enzyme. In the VKORC1 gene, polymorphisms 1173C>T, localized in the first intron, and -1639G>A in the promoter region, are of functional significance and reduce receptor activity. However, these two polymorphisms have been shown to be closely linked and therefore detection of one mutation (more commonly -1639 G>A) is sufficient.

Gene, specification: CYP2C9 gene (c.430C>T, c.1075A>C), VKORC1 (c.-1639G>A)

Type of material to be examined: blood, buccal swab

Indicating specialists: medical genetics, internal medicine, clinical haematology, neurology, paediatric neurology - as part of a healthcare provider with the status of a highly specialised cerebrovascular and stroke centre.

Delivery time: 3 working days

Learn more about the product

More info

METABOLISM OF XENOBIOTICS

Detection of mutations in the GSTT1, GSTM1 and GSTP1 genes. The GSTT1 (Glutathione S Transferase T1) and GSTM1 (Glutathione S Transferase M1) genes encode detoxification enzymes involved in the breakdown of carcinogens and harmful metabolites. For this reason, they play an important role in carcinogenesis - the development of tumours in various tissues.

The tested mutation leads to deletion (loss) of a part of the GSTT1/GSTM1gene sequence; this mutated allele is therefore referred to as allele 0. Genotype 00 (presence of two null alleles) causes a missing part of the sequence of the relevant gene and leads to a defect in the production of the corresponding detoxification enzyme. Genotype 00 in the GSTT1 or GSTM1 gene causes a lower ability to detoxify harmful substances and is associated with an increased likelihood of developing various types of cancer, especially when exposed to carcinogens (e.g., smoking). This risk is further increased by the combination of these genotypes with each other and with other risk genotypes of polymorphisms in the genes of other detoxification enzymes, GSTP1 and GSTM3.

The GSTP1 gene encodes the Glutathione-S-transferase P1 enzyme, which plays an important role in the breakdown (detoxification) of hydrophobic and electrophilic substances. This enzyme is involved in the breakdown of carcinogenic substances and metabolites in the body that are produced by the CYP1A1 enzyme. GSTP1 is also considered to be the main deactivator of tobacco smoke toxicants. The ability to neutralize (detoxify) and eliminate excess or potentially harmful substances from the body is very important for life. Substances that are not normally present in the body, are not necessary for its healthy development and do not serve as a source of energy for the body, are called xenobiotics. The main source of xenobiotics is the chemical industry and, in the case of polycyclic aromatic hydrocarbons, smoking and unsuitable diet as well.

Most substances are excreted by the kidneys and liver, but many substances are also excreted through the lungs, skin, and mucous membranes. The organ in which the highest number of detoxification reactions take place is the liver. In humans, there are two main phases of detoxification. In the first phase of detoxification, the substance is modified so that it can combine with amines, acids and alcohols in the subsequent second phase to facilitate its elimination from the body. An important role in conjugation reactions, i.e., the second phase of detoxification, is played by the association of substances with glutathione, where the conjugation of glutathione is enhanced by the GST enzyme present in liver cells. The conjugation of substances with glutathione allows faster elimination of toxic substances from the body. It has been found that individuals who have only one or no alleles of glutathione-S-transferase theta-1 (GSTT1) and Mu-1 (GSTM1) have reduced detoxification capacity and are at higher risk of developing cancer.

Gene, specification: GSTT1 (del), GSTM1 (del), GSTP1 (p.I105V)

Material: buccal swab, blood

Delivery time: within 5 working days

Learn more about the product

More info

CYP2C19, CYP2D6 PHARMACOGENETICS

The CYP2C19 and CYP2D6 isoenzymes metabolize more than a third of available drugs, including a large proportion of antidepressants, antipsychotics, anxiolytics, opiates, clopidogrel, PPIs, etc. Gene variants, deletions or gene duplications are relatively common for these isoenzymes and alter the rate of drug metabolism.

Based on genetic analysis, it is possible to estimate the metabolic status of an individual from zero enzyme activity to several-fold increased activity. Humans can be slow to ultra-fast metabolizers. The differences in serum drug levels in these people can even be tenfold. This leads to different drug efficacy depending on genetic predisposition. Therefore, drugs may cause serious side effects in predisposed people or may be completely ineffective.

Gene, specification: CYP2C19CYP2D6 genes

Type of material to be examined: blood, buccal swab

Indicating specialists: internal medicine, psychiatry, neurology

Delivery time: 10 working days

Learn more about the product

More info

COMPREHENSIVE PHARMACOGENETIC PANEL

The comprehensive pharmacogenetic panel detects variants in the most important genes for metabolising enzymes, membrane transporters and drug target receptors. The effect of enzymes on each drug varies. For some drugs, there are already global recommendations for dose adjustment or even relative contraindication based on detected gene variants. Thanks to the identified gene variants, the most appropriate drugs can be selected with minimal risk of adverse effects for a particular patient.

Based on this comprehensive analysis, the effectiveness of many drugs can be predicted, and dosages can be better adjusted. We base our recommendations on the worldwide pharmacogenomic recommendations that have already been compiled for statins, various antidepressants, NSAIDs, PPIs, metoprolol, allopurinol, clopidogrel, warfarin, some opioids, some antipsychotics, ondansetron, atomoxetine, some antiepileptics, inhalational anaesthetics. 

Gene, specification: panel of about 30 genes 

Delivery time: 3-4 months

Learn more about the product

More info

PharmaGen®

Genetic predispositions affect, among other things, the rate of drug metabolism, blood concentrations, treatment effectiveness and the risk of side effects. Simply put, genetic analysis will help you find out what medication is right for you and at what dose, and which drugs to avoid, which will significantly speed up the selection of the appropriate treatment and increase its effectiveness.

You will receive the result within 10 working days.

Learn more about the product

More info

Do you have a question or don't know which test to choose?

Call us at 800 390 390 or contact us and we'll be happy to help.